Color Segmentation Based Depth Filtering

Dipl.-Math. Michael Schmeing
Prof. Dr. Xiaoyi Jiang
Institute of Computer Science
University of Münster, Germany
Overview

- Depth Filtering
- Our Approach
- Results
 - Qualitative
 - Quantitative analysis method
- Conclusion
Depth Filtering

• Depth generation methods:
 – Active
 • Laser Scanner
 • ToF
 • Structured Light
 – Passive
 • Depth from stereo
 • Depth from motion
 • Depth from X

• There are no perfect depth maps
Example depth map

- Kinect (structured light camera)
OUR APPROACH
Our Approach

- Focuses on edge restoration
- Takes edge information of associated color stream
- Workflow:
 1. Occlusion Filling
 2. Segmentation of color stream
 3. Computation of representative depth map
 4. Edge restoration
 5. Post processing
Occlusion Filling

- Normalized convolution

\[D^{nc}(x) = \frac{\sum_{x' \in N_x} D(x)g(x, x')} {\sum_{x' \in N_x} g(x, x')} \]
Color Segmentation

• Edge information is taken from an oversegmentation (superpixel segmentation)

• We take Watershed segmentation because
 – Fast
 – Compact segments
 – Segments of approx. the same size (except thin “edge segments”)

• Color Segmentation:
 – Preprocessing of color stream (bilateral filter because of noise)
 – Apply Watershed
 – Cluster Splitting
Watershed Segmentation

• Idea of Watershed:
 – Interpret Grayscale image as relief
 – Place water sources on it
 – Flood relief and draw borders where lakes meet
 – Apply Bilateral Filter prior to reduce noise
Watershed Color Segmentation
Projected Color Segmentation in Depth
Representative Depth Map

- Compute a representative depth value for each segment

\[D^r(x, y) = \{ d_k : (x, y) \in S_k, \quad d_k = \text{median}_{(x', y') \in S_k} d(x', y') \} \]
Edge Restoration

- Use representative depth map to enhance edges:

\[
D^f(x, y) = \begin{cases}
D^r(x, y) & \text{if } |D(x, y) - D^r(x, y)| > \theta \\
D(x, y) & \text{otherwise}
\end{cases}
\]

- Outliers are corrected by depth values of the representative depth map

- Postprocessing: Bilateral Filter

\[
I(p) = \frac{\sum_{q \in N} K_s(||p - q||)K_c(||p - q||)I(q)}{\sum_{q \in N} K_s(||p - q||)K_c(||p - q||)}
\]
RESULTS
Original Depth Map
Normalized Convolution [9]
Berdnikov et al. [6]
Wasza et al. [7]
Our method
Qualitative Results

Input depth map

Our method
Quantitative Results - Method

• Test sequence: Clear foreground and background

• Other geometry is possible
Quantitative Results - Method

- Color frames define a clustering into foreground and background
- Depth frames define a clustering into foreground and background
- Perfect depth map -> Same clusterings
- Measure cluster similarity using Rand Index
 - Gives values between 0 and 1
Quantitative Results

![Graph showing quantitative results with different methods and frames.](image-url)
Quantitative Results

• Test sequence 2:
Quantitative Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>0.9865</td>
<td>0.9778</td>
</tr>
<tr>
<td>Berdnikov [6]</td>
<td>0.9118</td>
<td>0.9129</td>
</tr>
<tr>
<td>Knutsson [9]</td>
<td>0.8952</td>
<td>0.9120</td>
</tr>
<tr>
<td>Wasza [7]</td>
<td>0.8899</td>
<td>0.9121</td>
</tr>
</tbody>
</table>

Mean Rand Index Values
CONCLUSION
Conclusion

• We presented a new method for depth map enhancement
• Special focus on edge restoration
• We introduced a new method to quantify our results
• Our method shows promising results and outperforms others in terms of Rand Index values
• Future Work:
 – Add a temporal component
 – Make color segmentation temporal stable
References

Thank you.

Questions?